Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(49): 54662-54669, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459617

RESUMO

Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.

2.
ACS Nano ; 16(9): 14178-14187, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35994525

RESUMO

Sodium-Sulfur (Na-S) batteries are outstanding for their ultrahigh capacity, energy density, and low cost, but they suffer from rapid cell capacity decay and short lifespan because of serious polysulfide shuttle and sluggish redox kinetics. Herein, we synthesize thin films of covalent organic frameworks (COFs) with azobenzene side groups branched to the pore walls. The azobenzene branches deliver dual functions: (1) narrow the pore size to the sub-nanometer scale thus inhibiting the polysulfide shuttle effect and (2) act as ion-hopping sites thus promoting the Na+ migration. Consequently, the Na-S battery using the COF thin film as the separator exhibits a high capacity of 1295 mA h g-1 at 0.2 C and an extremely low attenuation rate of 0.036% per cycle over 1000 cycles at 1 C. This work highlights the importance of separator design in upgrading Na-S batteries and demonstrates the possibility of functionalizable framework materials in developing high-performance energy storage systems.

3.
Chem Rec ; 22(10): e202200127, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35876392

RESUMO

In recent years, the driving range of electric vehicles (EVs) has been dramatically improved. But the large-scale adoption of EVs still is hindered by long charging time. The high-energy LIBs are unable to be safely fast-charged due to their electrode materials with unsatisfactory rate performance. Thus it is necessary to summarize the properties of cathode and anode materials of fast-charging LIBs. In this review, we summarize the background, the fundamentals, electrode materials and future development of fast-charging LIBs. First, we introduce the research background and the physicochemical basics for fast-charging LIBs. Second, typical cathode materials of LIBs and the method to enhancing their fast-charging properties are discussed. Third, the anode materials of LIBs and the strategies for improving their fast-charging performance are analyzed. Finally, the future development of the cathode materials in fast-charging LIBs is prospected.

4.
Nanomicro Lett ; 14(1): 5, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859315

RESUMO

High-energy-density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g-1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10-10 cm2 s-1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g-1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g-1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g-1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.

5.
ACS Appl Mater Interfaces ; 13(46): 55020-55028, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752063

RESUMO

Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage systems due to the abundance and wide distribution of sodium resources. Various solutions have been successfully applied to revolve the large-ion-size-induced battery issues at the mid-to-low current density range. However, the fast-charging properties of SIBs are still in high demand to accommodate the increasing energy needs at large to grid scales. Herein, a core-shell Co2VO4/carbon composite anode is designed to tackle the fast-charging problem of SIBs. The synergetic effect from the stable spinel structure of Co2VO4, the size of the nanospheres, and the carbon shell provide enhanced Na+ ion diffusion and electron transfer rates and outstanding electrochemical performance. With an ultrahigh current density of 5 A g-1, the Co2VO4@C anode achieved a capacity of 135.1 mAh g-1 and a >98% capacity retention after 2000 cycles through a pseudocapacitive dominant process. This study provides insights for SIB fast-charging material design and other battery systems such as lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...